Comparison of Head Impact Exposure Between Concussed Football Athletes and Matched Controls: Evidence for a Possible Second Mechanism of Sport-Related Concussion.

Stemper BD, Shah A, Harezlak J, Rowson S, Mihalik JP, Duma SM, Riggen LD, Brooks A, Cameron KL, Campbell D, DiFiori JP, Giza CC, Guskiewicz KM, Jackson J, McGinty GT, Svoboda SJ, McAllister TW, Broglio SP, McCrea M; CARE Consortium Investigators.

Ann Biomed Eng. 2018. [Epub ahead of print]

Full Text Freely Available

Take Home Message: Athletes with a concussion had greater exposure to head impacts on either the day of injury or in the season leading up to the injury compared to peers matched on the same team and playing the same position.

Authors conducting biomechanical concussion research have suggested that repetitive head impact exposure (lifelong or recent) may increase a player’s risk for concussion due to a decrease in concussive tolerance. However, much of this prior research involved no control group, a small cohort of athletes with a concussion, or only one competitive season. Therefore, the authors collected head impact data from the 2015-2017 fall and spring seasons at 6 institutions (part of the NCAA CARE Consortium) to determine differences in repetitive head impact exposure between 50 college football athletes with a concussion compared to healthy peers (~4 per concussed). Each team’s medical staff diagnosed a concussion with a standardized concussion evaluation. The authors selected a control group by finding athletes without a concussion, who participated in 33% of the season, and who were exposed to the same practice and game conditions per team and position. Head impacts were measured using the HIT System, embedded in each athlete’s helmet. The authors calculated head impact exposure for each athlete using the number of recorded head impacts and cumulative injury risk (cumulative severity based on the linear and rotational acceleration data). During the 6 seasons a total of 424,059 head impacts were recorded. Interestingly, athletes without a concussion sustained 4,589 head impacts with greater acceleration (linear and rotational) than the average accelerations among athletes with a concussion (~71g’s), and 249,160 head impacts with acceleration greater than the lowest magnitude of a concussive impact. However, 72% of athletes with a concussion recorded greater exposure to head impacts on the injury date or the season leading up to that injury date when compared to their matched controls. The authors found that 43% of the athletes with a concussion had the most severe head impact on the day of injury compared to their matched peers. Additionally, 46% of athletes with a concussion had the most severe head impact exposure for the season leading to the date of injury compared to their matched peers.

This is one of the first studies to take a large cohort of athletes and compare athletes with a concussion to a large control group over a season. The authors found that a player with a concussion was more likely to have a greater exposure to head impacts on the day of concussion or season leading up to the concussion when compared to matched peers. The authors suggested that there may be a window of vulnerability and/or a time when concussion tolerance is low. This vulnerable window increases a player’s risk of concussion when exposed to a head impact; however, further research will be necessary to validate this finding. This will be particularly important to determine if the risk of concussion per head impact changes as a person is exposed to more impacts or if the current findings just show that the more times a head is impacted the more times there is a chance for concussion. It was also interesting to note that there were many high magnitude head impacts sustained by the control group, which suggests that finding a concussion threshold will be difficult. Researchers and medical professionals may need to re-assess the way head impact forces are used to assist in the identification of a potentially concussed athlete. Currently, medical professionals should be aware of the potential increased risk of injury an athlete may have due to repetitive head impacts. They should discuss with parents, coaches, and athletes the benefits of reducing head impact exposure through limiting contact practices.

Questions for Discussion: Should we consider limited contact practices not just in football but other sports as well (e.g., lacrosse, rugby, ice hockey)? Do you think we should still try and find a head impact threshold?

Written by: Jane McDevitt

Reviewed by: Jeffrey Driban

Related Posts:

Rotational Head Kinematics in Football Impact: An Injury Threshold?

Rotational Head Kinematics in Football Impacts: An Injury Risk
Function for Concussion

Head Impact Biomechanics Don’t Relate to Concussion Severity

Post Concussion Cognitive Declines and Symptomatology are not Related to Concussion Biomechanics in High School Football Players

With Concussions, It’s Not Always the Hit You See

Concussion Threshold: TBD?